Ингибирование абсорбции железа. Метаболизм железа: современные представления. Влияние Д2-рецепторов на процесс обучения

Точные механизмы извлечения железа из кормов и его абсорбции неизвестны. Предполагается, что у животных с однокамерным желудком комплексные соединения железа под влиянием соляной кислоты и пепсина желудочного сока расщепляются, и трехвалентное железо, восстанавливаясь, переходит в двухвалентное. Образующиеся соли (в частности, FeCl2) хорошо ионизируются и абсорбируются. Из растительных продуктов железо, по-видимому, усваивается лучше, чем из продуктов животного происхождения. Геминовое железо животных кормов слабо усваивается.
Железо всасывается в основном в двенадцатиперстной кишке. Процесс всасывания протекает в два этапа: захват железа стенкой кишки и транспорт его кишечным эпителиоцитом в кровь. В слизистой кишечника предполагается наличие особою «блокирующего» механизма абсорбции железа: при насыщении слизистой железом в форме ферритина абсорбция прекращается. Согласно другой точке зрения, абсорбция регулируется не путем блокады, а изменением в кишечнике соотношения хелатирующих агентов, образующих с железом легко-или труднорастворимые комплексы. Способствуют всасыванию железа редуцирующие вещества корма или антиоксиданты; аскорбиновая кислота, токоферол, - SH-группы серосодержащих аминокислот и глютатиона. Ингибируют всасывание органические кислоты, образующие нерастворимые соли железа (оксалат, цитрат, возможно фитат), а также избыток фосфатов. Ухудшается абсорбция железа при ускорении транзита химуса.
Обратного процесса - непосредственного переноса железа из плазмы в просвет кишечника, - по-видимому, не происходит. Эндогенные потери железа обусловлены его выведением с желчью и десквамированным эпителием слизистой. Перенос железа от слизистой к органам осуществляется с помощью двух соединений - ферритина Fe3+ (в слизистой) и трансферрина Fe2+ (в сыворотке крови). Депонируется железо в печени и селезенке в форме ферритина, состоящего из белка (апоферритина) и комплекса гидроокиси Fe с фосфорной кислотой. Между Fe-coдержащими соединениями слизистой, крови и печени (селезенки) существует динамическое равновесие. По мере расхода железа плазмы для синтеза гемоглобина, миоглобина и ферментов или при кровопотерях железо из депо поступает в плазму; блокада слизистой при этом снимается, абсорбция железа в кишечнике возрастает, и запасы его в депо пополняются. Иначе говоря, размеры пула железа контролируются потребностями организма, хотя точный механизм этой регуляции неизвестен. Уровень железа в печени животных (особенно молодняка) зависит от его содержания в корме и может служить диагностическим критерием обеспеченности животных этим элементом.
Потребность взрослых животных в железе невелика, так как порфириновое железо, освобождающееся при разрушении эритроцитов, почти полностью реутилизируется для синтеза гемоглобина. Потребность в пищевом железе молодняка и беременных животных выше.
При инъекции животным радиоактивного железа 59Fe оно быстро обнаруживается в костном мозге с максимумом концентрации через 3-6 дней. Насыщение эритрона гемоглобином требует несколько дней. Поскольку метаболическое железо прочно удерживается организмом, его эндогенные потери невелики. У телят переходного периода они составляют 12 мг в сутки. В основном это железо выводится через желудочно-кишечный тракт (с желчью) и в следовых количествах - с мочой.
Абсорбция железа из натуральных кормов у взрослых животных колеблется в среднем в пределах 5-10% от принятого. Она возрастает до 15-20% при недостатке железа в рационе, интенсивном эритропоэзе, истощении запасов железа в организме. Железо молока усваивается телятами на 15-25%. Интересно отметить, что усвоение железа из сернокислых или хлористых солей также не превышает указанных величин. При высоком содержании железа в рационе дойных коров (пастбищный корм) его среднее отложение в организме составляло 1,3%, с большими индивидуальными колебаниями.
Общая схема обмена железа в организме приведена на рисунке 7.1.

Железо является одним из тех элементов питания, усвоение которого в огромной степени зависит от продуктов, съеденных в один прием пищи.
Можно съесть продукт, содержащий большое количество железа, но оно не усвоится, если в этот же прием пищи будет употреблено вещество, блокирующее всасывание. И наоборот, можно съесть относительно немного железа, но при употреблении стимуляторов всасывания организм получит вещество в полном объеме.

Другими словами, всасывание железа напрямую зависит от его растворимости в кишечнике, а это, в свою очередь, определяется составом съеденной за один прием пищи.

Приведем общую таблицу веществ, ускоряющих или тормозящих всасывание железа , а потом рассмотрим подробно, с чем связано такое влияние.

Продукты и вещества,
ТОРМОЗЯЩИЕ
всасывание железа
Продукты и вещества,
УСКОРЯЮЩИЕ
всасывание железа
Продукты Степень влияния Активное вещество Продукты Степень влияния Активное вещество
цельные зернопродукты, кукуруза --- фитат печень/мясо/рыба +++ "мясной фактор"
чай, зеленые листовые овощи --- полифенолы апельсин, груши, яблоки +++ витамин С
молоко, сыр -- кальций плюс фосфат сливы, бананы ++ витамин С
шпинат - полифенолы, оксалиновая кислота цветная капуста ++ витамин С
яйцо - фосфопротеин, альбумин помидоры, зеленый перец, огурцы + витамин С
морковь, картофель, свекла, тыква, брокколи, помидоры, капуста ++ лимонная, яблочная, винная кислоты
кефир, квашеная капуста ++ кислоты

Источник:
British Nutrition Foundation. Iron: nutritional and physiological significance. Report of the British Nutrition Foundation Task Force. London, Chapman & Hall.

Витами С стимулирует всасывание железа

Витамин С является сильнейшим активатором всасывания железа. Это связано со способностью аскорбиновой кислоты повышать его растворимость и образовывать растворимые соединения.

Как снизить блокирующее действие фитатов на всасывание железа

Фитаты – это форма хранения фосфатов и минералов, присутствующие в злаках, овощах, семенах, орехах. Они являются одним из самых сильных веществ, которые блокируют всасывание железа и даже небольшое количество может сделать недоступным все железо, съеденное в данный прием пищи.

К счастью, есть ряд простых методов, которые снижают уровень фитатов:

  • ферментация,
  • проращивание,
  • помол,
  • вымачивание,
  • обжаривание.
Легкая тепловая обработка снижает содержание фитата в клубнях, но не воздействует на зерновые и бобовые.
Вымачивание и проращивание способствует разрушению фитата в зерновых и бобовых.

Полифенолы блокируют всасывание железа

Феноловые соединения существуют почти во всех растениях и являются частью их системы защиты против насекомых и животных. Несколько феноловых соединений связывают железо и таким образом препятствуют его всасыванию. Эти соединения содержатся в
  • кофе,
  • какао,
  • во многих овощах, нескольких травах, специях.
Особенно внимательно следует относиться к употреблению чая маленькими детьми. Содержащийся в нем полифенол таннин снижает всасывание железа на 62% (Hallberg, L. & Rossander, L. Effect of different drinks on the absorption of non-heme iron from composite meals. Human nutrition: applied nutrition, 36: 116-123 ).
Такое сильное воздействие позволяет даже использовать чай в виде лекарства для лечения перегрузки по железу.

К сожалению, можно часто видеть, как мамочки, не поимая действия чая, дают маленькому ребенку этот напиток к крайне раннем возрасте, и даже грудничкам. Это может в значительной степени способствовать развитию недостаточности железа.
При рождении запасов железа много, но они истощаются в первые 6 месяцев жизни, и далее ребеночек полностью зависит от получения этого элемента из пищи.

Величину запасов железа можно оценить путем измерения уровня ферритина в сыворотке.

Организм регулирует всасывание железа исходя из запасов

Железо относится к таким жизненно важным элементам питания, которые организм умеет накапливать.
Это очень важно помнить и если в какие-то периоды Вы потребляете много железа (хороший урожай яблок, яблочные разгрузочные дни и т.п.), то потом нужно на какой-то период потребление железа снижать.
Наш организм природа создала очень умным, он способен регулировать всасывание при большом количестве запасов. Крайне опасно считать какой-то минерал, витамин «полезным» и стараться есть его как можно больше. Все организму нужно ровно в том количестве, в каком нужно. Если уже НЕ нужно, а Вы продолжаете насыщать организм НЕ нужным уже элементом, то это неизбежно приводит к проблемам со здоровьем.
При избыточном потреблении железа повышается риск:
  • инфекций,
  • сердечно-сосудистых заболеваний,
  • неинсулинзависимого диабета,
  • рака.
Эти риски появляются в связи с тем, что железо является прооксидантом, поэтому его повышенное потребление может вызвать окислительный стресс.
Кроме того, высокий уровень потребления железа может мешать всасыванию меди и цинка, т.к. эти 3 минерала имеют один и тот же механизм всасывания.

Определить, сколько Вам нужно потреблять железа в сутки, можно в

Гемное и негемное железо

Есть два типа железа в пище: гемное и негемное железо, и всасывание их происходит посредством разных механизмов. Гемное железо присутствует в гемоглобине и миоглобине в мясе (особенно в печени) и рыбе и всасывается лучше, чем негемное железо.

Средний показатель всасывания гемного железа из мяса составляет около 25%. В противоположность негемному железу, на всасывание гемного железа другие составные элементы питания и статус железа влияют очень мало. Тем не менее, большая часть пищевого железа присутствует в виде негемного железа. Пища для прикорма грудных детей может содержать мало мяса, поэтому большая часть пищевого железа находится в негемной форме. Всасывание негемного железа намного ниже, чем гемного, и зависит от статуса железа конкретного человека: больше негемного железа всасывается людьми, испытывающими недостаточность железа, меньше - людьми, чей организм насыщен железом. Кроме того, всасывание негемного железа зависит от его растворимости в кишечнике, а это, в свою очередь, определяется составом съеденной за один раз пищи. Витамин С является восстановителем и сильным средством активизации всасывания железа, повышающим его растворимость путем окисления элемента железа из трехвалентного (Fe3+) в двухвалентное (Fe2+) состояние и образования растворимого соединения. Активаторы и ингибиторы, присутствующие в пище, часто оказываются более сильными факторами, определяющими статус железа, чем его фактическое содержание.

Активаторы и ингибиторы

Количество всасываемого железа в пище зависит от соотношения между ингибиторами и промоторами (таблица 30). Поскольку взаимодействие происходит в желудочно-кишечном тракте, тормозящее или ускоряющее влияние пищевых компонентов на всасывание негемного железа сильнее всего при потреблении этих компонентов за один и тот же прием пищи.

Одним из наиболее сильных стимуляторов всасывания железа является витамин С, находящийся в свежих овощах и фруктах, и между потреблением витамина С и всасыванием железа существует четкая зависимость типа “доза-реакция” (10). Также ускоряют всасывание негемного железа ферментированные продукты, такие, как кефир и квашеная капуста. В присутствии кислоты образуются комплексы с железом, которые предотвращают образование менее усвояемого фитата железа. Кроме того, некоторые виды помола и термической обработки понижают содержание фитата в основных пищевых продуктах растительного происхождения и тем самым помогают повысить всасывание негемного железа. Считается, что легкая тепловая обработка снижает содержание фитата в клубнях, но не в зерновых и бобовых. Вымачивание и проращивание способствуют ферментативному гидролизу фитата в зерновых и бобовых (11).

Самыми сильными ингибиторами всасывания железа являются фитаты и полифенолы. Фитаты представляют собой форму хранения фосфатов и минералов, присутствующих в

Таблица 30. Содержащиеся в пище соединения, тормозящие (-) или ускоряющие (+) всасывание негемного железа
Продукты Степень Активное вещество
влияния
Тормозящие

Цельные зернопродукты

и кукуруза - Фитат
Чай, зеленые листовые овощи - Полифенолы
Молоко, сыр - Кальций плюс фосфат
Шпинат - Полифенолы,
оксалиновая кислота
Яйцо - Фосфопротеин,
альбумин
Зернопродукты - Пищевые волокна
Ускоряющие

Печень/мясо/рыба

+++ “Мясной фактор”
Апельсины, груши, яблоки +++ Витамин С
Сливы, бананы ++ Витамин С
Цветная капуста Салат, помидоры, зеленый ++ Витамин С
перец, огурцы

Морковь, картофель, свекла,

+ Витамин С
тыква, брокколи, помидоры, Лимонная, яблочная,
капуста ++/+ винная кислоты
Кефир, квашеная капуста ++ Кислоты
Источник: адаптировано из British Nutrition Foundation (9).

зернах злаковых растений, овощах, семенах и орехах.

Они активно тормозят всасывание железа, действуя при этом в прямой зависимости от дозы, и даже небольшие количества могут тормозить всасывание железа. Существует целый ряд традиционных приемов приготовления пищи, которые снижают уровень фитатов в растительных продуктах питания. К ним относятся ферментация, проращивание, помол, вымачивание и обжаривание. Ферментация может почти полностью разложить фитаты и тем самым улучшить всасывание железа.

Феноловые соединения существуют почти во всех растениях и являются частью их системы защиты против насекомых и животных. Несколько феноловых соединений связывают железо и таким образом препятствуют его всасыванию. Такие соединения содержатся в чае, кофе и какао, а также во многих овощах и нескольких травах и специях. Тормозящее действие чая на всасывание железа вызывает полифенол таннин, содержащийся в чае. Установлено, что чай снижает всасывание железа из пищи на 62% по сравнению с водой (12). Более того, чай даже используется в лечебных целях для лечения перегрузки по железу (13). Во многих европейских странах и особенно в республиках Центральной Азии распространена практика введения чая в рацион питания грудного ребенка в раннем возрасте. Например, обследование детей в возрасте от 0 до 3 лет в Казахстане, Кыргызстане и Узбекистане показало, что чай получают соответственно 21%, 34% и 49% детей (14). Аналогичные привычки встречаются в Центральной и Западной Европе (15), особенно среди национальных меньшинств. Подобная практика способствует развитию недостаточности железа.

Прочие факторы

Запасы железа регулируются, главным образом, путем изменений во всасывании железа. К синдрому недостаточности всасывания, в том числе всасывания железа, может привести повреждение слизистой оболочки кишечника вследствие слишком раннего введения немодифицированных коровьего молока и молочных продуктов (см. ниже раздел “Потери железа”) (16). Это может быть особенно выражено при глютенчувствительной целиакии, которая, если ее не лечить, часто сопровождается железодефицитной анемией. Распространенной причиной недостаточности железа вследствие малабсорбции является также диспептическое заболевание. Во время системных инфекций происходит острое снижение всасывания железа, сопровождающееся перемещением железа из кровообращения в печень. Это естественный защитный механизм организма в периоды инфекции, направленный на снижение роста вредных бактерий, которым для размножения требуется железо.

Железо, незаменимый элемент для роста и выживания организмов, играет важную роль в многочисленных биологических функциях. Его участие особенно очевидно в транспорте кислорода гемоглобином, в синтезе ДНК (в составе коэнзима редуктазы рибонуклеотидов) и в активности оксидоредукции многочисленных митохондриальных энзимов.

Количество железа в организме чрезвычайно стабильно и определяется равновесием между поступлением и исходом этого металла. Механизмы регуляции движения железа длительное время оставались не понятными. За последние годы были открыты многие протеины, вызывающие особый интерес. Некоторые из них участвуют в абсорбции железа из пищи на апикальном полюсе дуоденальных энтероцитов, тогда как другие, принимают участие в транспорте этого металла в плазму на базолатеральном полюсе тех же энтероцитов. Также были открыты два основных регулятора гомеостаза железа, протеин HFE и гепсидин. Применение моделей на животных и молекулярные генетические исследования различных форм гемохроматоза человека произошли именно из тех новых знаний, которые привели к эволюции старых моделей.

Взрослый человек обладает приблизительно 4 г железа. Последнее обеспечивается за счет очень небольшой части поступающей с пищей и в основном за счет рециклирования железа, начиная с лизиса старых кровяных телец. В этом последнем механизме особенно задействованы макрофаги селезенки и красного костного мозга, и в меньшей мере, клетки Kupffer. От 60 до 70% железа инкорпорированы в гемоглобин. Приблизительно 10% находится в миоглобине, цитохромах и энзимах содержащих железо. Остальное железо переходит в запас железа или в форме ферритина (легко мобилизируемая форма резерва) или в форме гемосидерина (трудно мобилизуемая форма резерва). Плазматический транспорт включает трансферритиновое железо и составляет приблизительно 1% железа от общего объема организма.

Ежедневные потери железа чрезвычайно малы, порядка 1 мг в день. В основном они осуществляются через пищеварительный тракт: десквамация эпителиальных клеток кишечника, микрокровотечения и потери с желчью. Железо также теряется и при десквамации эпителиальных клеток кожи, и в меньшей степени с мочой. Компенсация этих потерь имеет фундаментальное значение и происходит путем абсорбции железа из пищи. Интестинальная абсорбция представляет главный этап, который должен тщательно регулироваться; человеческий организм не имеет средств контроля за его экскрецией. Регуляция этой абсорбции сама находится под воздействием общего содержания железа в организме, эритропоетической активности, гипоксии и содержания железа и природы питания.

1. Интестинальная абсорбция железа
Энтероциты ворсинок двенадцатиперстной кишки и проксимальной части jejunum ответственны почти за полную абсорбцию геминического и негеминического железа. Эти энтероциты являют-ся результатом созревания и миграции мультипотентных исходных клеток, располагающиеся в дуоденальных криптах. Чтобы попасть из интестинального просвета в плазму, железо должно пересечь апикальную мембрану, сам энтероцит, а затем базолатеральную мембрану.
Геминическое железо эндоцитируется с молекулой гема после сливания с потенциальным, пока еще не идентифицированным, рецептором. Затем железо освобождается в энтероците после отторжения молекулы гема гем-оксигеназой.

Что касается абсорбции железа не геминического на уровне апикального полюса энтероцита, то наиболее вероятный механизм - это участие транспортера дивалентного катиона DMT1. В этом случае атомы феррического железа поступившие с пищей сначала редуцируются в атомы фер-ритического железа ферриредуктазой, называемой Cybrd1, затем захватываются этим транс-портером. Значение этого пути абсорбции было продемонстрировано открытием у гомозиготных животных по спонтанной мутации в гене SLCIIA2 (мыши mk и крысы Belgrad) тяжелой микроци-тарной анемии. Эта анемия возникает в результате нарушения интестинальной абсорбции али-ментарного железа клетками эритропоэтической линии.

Второй механизм, также определяющий абсорбцию не гематического железа, включает комплекс муцин-интегрин-мобильферритин. Эта модель абсорбции, точный механизм которой не до конца выяснен, был предложен только группой Conrad et Umbreit.

Транспорт железа внутрь энтероцита остается малопознанным. Потенциальная токсичность этого металла предполагает, что он находится в комплексе с мелкими молекулами или внутриклеточными протеинами шаперонами. Некоторые авторы указывают на возможную роль протеина гефестина, а другие на таковую мобильферритина и параферритина. После захвата железо может быть направлено в сторону ферритина, где протеины энтероцита могут использовать его в качестве неорганического кофактора, или к базальному полюсу энтероцита. В первом случае абсорбированное железо будет утрачено в процессе естественной десквамации энтеро-цитов, тогда как во втором, оно будет находиться в резерве, чтобы быть направленным в общую циркуляцию.

Процесс высвобождения железа в сторону общей циркуляции включает по меньшей мере два протеина, которые были идентифицированы совсем недавно. Первый под названием ферропортин, это трансмембранная молекула ответственная за транспортировку ferreux железа. В любом случае экспримируясь единственно на базальном полюсе энтероцита, его будет недостаточно чтобы обеспечить выход железа. Функциональные исследования фактически показали, что этот механизм делает неизбежным активность второго протеина, феррооксидазы, представляемого гефестином. Роль ферропортина в транспорте железа было подтверждена in vivo недавним описанием у людей перегрузок железа, возникших в результате мутации в гене SLC40AI, кодирующего этот протеин. Роль протеина гефестина была выяснена обнаружением у мышей Sla (Sex-linked anaemia), представляющим фенотип микроцитарной анемии вторичной к недостатку экспорта железа энтероцитом в плазму. Этот недостаток является следствием делеции в гене, кодирующим гефестин. Эта анемия могла быть скореггирована путем паренетерального введения железа, но оставалась рефрактерной к оральному введению, что также подтверждало наличие аномалии на уровне интестинальной абсорбции.

2. Транспорт и целлюлярная абсорбция железа
Железо поступающее из энтероцитов (5%) и из рециклажа старых эритроцитов системы мононуклеарных макрофагов (95%) в нормальных условиях в основном переводится в костный мозг, где оно необходимо для синтеза гемоглобина. Фракция железа не предназначенная для костного мозга делится между другими различными местами утилизации и местами накопления представленными макрофагами, но в основном, гепатоцитами, особенно чувствительными к перегрузкам железом.

Железо транспортируется в плазму в основном в форме железа связанного с трансферрином. Комплекс железо-трансферрин затем захватывается рецептором 1 трансферрина (RTf1), присутствующим в различных органах, в частности печени и эритропоетических клетках. Во время перегрузок железа появляется особая биохимическая форма железа. Речь идет о железе не связанном с трансферрином, особенностью которого в отличие от железа связанного с трансферрином, является преимущество захвата печенью. Эта форма железа способного генерировать свободные радикалы, не поддается любой из известных форм регуляции и в весьма значительной степени способствует осложнениям связанным с перегрузками железом.

3. Становление клеточного железа
После проникновения в клетку железо должно быть правильно распределено между различными пулами, представленными пулом транзита, функциональным пулом и пулом накопления.

3.1 Пул транзита
Также называемого пул железа «малого молекулярного веса» или пул лабильного железа, это последнее представляет une plaque tournante, проходя через которую железа направляется или в функциональный пул, или в пул накопления. Выражаясь более точно, речь идет о железе, присутствующем в цитозоле в ферритической и/или феррозной форме, связанного с химическими соединениями, вероятно малого молекулярного веса, особенности которого еще надо установить.

3.2. Функциональный пул
Этот пул соответствует количеству железа необходимого и достаточного, чтобы обеспечить по-требности различных путей метаболизма необходимых для выживания клетки. Этот также связан с межклетчными коммуникациями. В частности речь идет о железе инкорпорированном в геминические протеины, такие как гемоглобин и цитохромы, а также о железе кофакторе различных энзиматических реакций, таких, например, как рибонуклеотид редуктаза.

3.3. Пул накопления
Главным образом он представлен железом инокорпорированным в виде ферритина и в меньшей степени железом инкорпорированным в гемосидерин.

4. Регуляция гомеостаза железа
Среди множественным механизмов конкурирующих в поддержании гомеостаза железа три феномена представляются особенно важными:
· абсорбция железа, начиная с просвета пищеварительного тракта энтероцитами, которая адаптирована до определенного уровня к ежедневным потерям и контролирует глобальное содержание железа в организме;
· система IRE/IRP (Iron Responsive Element/Iron Regulatory Protein) позволяет каждой клетки определять количество проникающего в нее железа и перенаправлять его при необходимости в сторону ферритина в целях предохранения клетки от пагубного эффекта перегрузкой цитозоли-ческого железа;
· эритрофагоцитоз и рециклаж железа эритроцитов предоставляет право распределения железа в плазме совокупности клеток и обеспечивает при этом биодоступность железа, имеющегося в организме. В отношении этого механизма или регуляции этого феномена в настоящее время имеется очень мало данных.

Эти три элемента таким образом соответственно участвуют в стабилизации запаса железа в организме, в овладении клеточным метаболизмом железа и распределении биодоступного железа.

4.1. Регуляция интестинальной абсорбции железа
Эта регуляция является важнейшей, так как человеческий организм не имеет средств контроля за его экскрецией. Если механизмы позволяющие регулировать эту абсорбцию еще не до конца известны, тем не менее есть сообщения о том что:

· клетки дуоденальных крипт кажется просвещены в отношении потребностей организма в железе и, в свою очередь, програмируют количества необходимого для абсорбции на уровне зрелых клеток ворсинок. Природа этого молекулярного сигнала еще пока неизвестна. Этот процесс разворачивается в течение двух трех дней с отсрочкой соответствующей созреванию и миграции энтероцитов на уровне интестинальной ворсичатости, местах абсорбции железа. Согласно Frazer et Anderson эта схема недостаточна для объяснения быстрых изменений происходящих на уровне интестинальной абсорбции железа при острой воспалительной реакции или после переливания ретикулоцитов. Также согласно этим авторам сигналы, модулирующие эту абсорбцию, оказывают непосредственный эффект на зрелые энтероциты дуоденальной ворсинчато-сти.; клетки крипт не играют никакой непосредственной роли в регуляции этого процесса;

· интестинальная асборбция железа контролируется количеством железа, недавно поступившего с пищей. В этом случае говорят об алиментарном регуляторе. Также чрезмерное количество железа в пище в течение нескольких дней может привести снижение обычно существующей абсорбции из пищи. Этот феномен, называемый слизистый блок, может наблюдаться даже при обеднении организма железом.

· У здорового индивидуума интестинальная абсорбция железа изменяется обратно пропорционально количеству запасенного железа и, наоборот, прямо пропорционально активности эритропоэза. В этой связи Finch предположил существование двух регуляторов: регулятор stock-зависимый, который осуществляет контроль по содержанию железа в организме и регуля-тор эритрозависимый, регулирующий по потребностям эритропоэза. Последние оказывают воздействие на процесс общего интестинального контроля (информируя криптические клетки), но последовательно и с разными количественными эффектами. Также stock-зависимый фактор позволяет увеличивать интестинальную абсорбцию железа, когда потребности остаются ограниченными 1 или 2 мг в день. Его вмешательство оказывается типично необходимым при менструальных потерях. Более значительные потребности порядка 3-4 мг в день включают активацию фактора эритро-зависимого. Это особенно заметно в случаях добровольного изъятия крови (доноры) или в целях лечебных. Эти два регулятора должны быть представлены двумя плазматическими растворимыми агентами, способными коммуницировать с различными сайтами участвующими в утилизации; относительно отдаленными друг от друга сайтами.

Недавно полученные результаты утверждают, что одним из кандидатов на функцию регулятора может быть гепсидин.

4.1.1. Гепсидин
Этот антимикробный пептид, синтезируемый в печени в форме препропептида из 84 аминокислот экскретируется в циркуляцию в форме зрелого структурированного пептида из 25 амино-кислот в присутсвтии восьми цистеинов, образующих четыре дисульфурных моста.

Участие гепсидина в метаболизме железа было выявлено по результатам работ двух различных групп применявшими общий подход сустрактивных банков между РНК мышей перегруженных и мышей контрольной группы. Значение роли гепсидина может быть подтверждено:

· описанием у трансгенных животных, сверхэкспримированных к гепсидину, глубокого обеднения железом с развитием гипохромной тяжелой микроцитарной анемии и плюс часто летальной в перинатальном периоде. Это наблюдение подтверждает роль гепсидина в трансплацентарном захвате железа;
· описание регрессии хронической рефрактерной анемии при хирургическом удалении аденомы печени чрезмерно выделявшей гепсидин;
· недавнее описание ассоциации между мутациями гена кодирующего гепсидин и наличием фенотипической картины тяжелого ювенильного гемахроматоза, демонстрирующим также зна-чительное участие гепсидина в метаболизме железа.

Гипотеза эндокринного действия этой молекулы была рассмотрена, но предполагается взаимодействие с одним или несколькими партнерами, которые требуют идентификации. Полученные данные к настоящему времени заставляют заниматься поиском взаимодействия этого мощного гормона с другими протеинами участвующими в метаболизме железа. Молекула HFE и протеины связанные с ней, рецептор 1 трансферрина и бета-2микроглобулина или также рецептор 2 трансферритина, могли бы представлять мишени выбора.

Гепсидин, вырабатываемый в избытке, вызывает снижение абсорбции железа и благоприятствует его задержке в макрофагальной системе. И наоборот, пониженный уровень выработки гепсидина оказывает благоприятствующий эффект на абсорбцию железа и сокращении его за-держки в макрофагах; это соответствует фенотипу наблюдаемому при генетическом гемохроматозе связанном с геном HFE. Сходный фенотип мышей с дефицитом протеина HFE или гепси-дина с самого начала указывал на то, что эти два протеина одним и тем же образом воздействовали на проведение сигнала между тканевым железом и энтероцитом. Эта гипотеза получила поддержку открытием у мышей как и у дюдей недостатка активации синтеза гепсидина в ответ на перегрузку железом при мутировавшем или инактивированном протеине HFE. Введение трансгенного гепсидина мышам с дефицитом протеина HFE кроме того мешает развитию перегрузки железом. Эти работы показывают однако, что протеин HFE «дикий» участвует в регуляции экспрессии гена кодирующего гепсидин (ген HAMP) в ответ на избыточное накопление железа в печени. Он приводит в этих случаях к активации экспрессии гена HAMP. Наиболее часто встречающая мутация гена HFE (мутация C282Y), наоборот, по своей сути представляет недостаток стимуляции гена кодирующего этот пептид.

Роль гепсидина в контроле метаболизма железа энтероцитарного, плацентарного и макрофагального очевидна, но не может сама по себе учитывать все физиопатологические ситуации на-блюдаемые у животных, как и при генетических гемохроматозах человека. На пример, Weinstein et al продемонстрировали снижение РНКm кодирующего гепсидин у мышей со снижением железа в результате генетического дефицита энтероцитарного захвата железа (мыши mk и Sla). То же самое парадоксальное снижение отмечалось у трансферритинемических мышей, проявляющих одновременно анемию из-за дефицита инкорпорации железа в эритробласты и значительную перегрузку железом печени. Это последнее обстоятельство заставляет предполагать сигнал эритроидного происхождения в контроле за экспрессией гепсидина. Также возможно, что регуляторы накопления и эритроиды используют общий сигнал и, что регуляция интестинальной абсорбции железа в зависимости от потребностей железа, является опосредованной (непрямой). Сигнал медуллярного происхождения (не идентифицированный) посылается к печени, которая при этом играет центральную роль в выработке гепсидина. Гепсидин становится как бы центром этой сети, играя роль настоящего гормона. Это вещество стало уже диагностическим инструментом и может стать новым средством терапии. Гепсидин сам по себе, его аналоги, а также игибиторы этого синтеза могли стать новыми фармакологическими агентами. Только полное выяснение этих механизмов действия и их регуляции позволило бы установить его ме-сто в лечении пациентов. Возможности взаимодействия гепсидина с недавно открытым протеи-ном, получившим название гемоювенилин, еще более усложнит предлагаемую схему регуляции метаболизм железа гепсидином.

4.1.2. Протеин HFE
Этот протеин, состоящий из 343 аминокислот кодируемый геном HFE относится к семейству комлекса Главной Тканесовместимости класс I. Кристаллографический анализ последнего, рН-метрия нейтральная и в присутствии железа позволил выявить фиксацию атомов железа что указывает, что его роль в метаболизме этого металла может быть только опосредованной. Ис-следования ко-иммуннопреципитации показали, что протеин HFE дикий взимодействует с b2-микроглобулином (b2m); взаимодействие необходимое для направления этого протеина HFE на поверхность клетки. Также было показано, что комплекс HFE-b2m ассоциирует с RTf1; также предполагая роль HFE в захвате железа через этот рецептор.

Хотя точные механизмы, позволяющие протеину HFE оказывать действие на уровне криптиче-ский интестинальных клеток, пока еще не установлены, существует консенсус в отношении дей-ствия этого протеин на этом уровне как информатора потребностей организма в железе. В случае функциональной несостоятельности HFE (связанной с наличием гомозиготного состояния по мутации C282Y) состояние каренции железа при этом замечается клетками дуоденальных крипт. Последние стимулируют в свою очередь интестинальную абсорбцию алиментарного железа, несмотря на перегрузку железом организма. Эти данные также позволяют делать предпо-ложение о непосредственном энтероцитарном влиянии мутации C282Y. Сам факт наблюдения того, что мутантные по HFE мыши сохраняют способность регулировать абсорбцию железа или во всяком случае лимитирует интестинальную роль этого протеина HFE. Эта роль также ста-вится под вопрос в связи с открытием гепсидина. Участие этого пептида в метаболизме железа фактически приводит к поиску отношений этого пептида и протеина HFE. Как мы указывали ра-нее, протеин HFE дикий участвует в регуляции экспрессии гена HAMP. По разным авторам ос-новной сайт действия протеина HFE располагается не на уровне криптических клеток, а на уровне гепатоцитов. Согласно модели, характер которой в высшей степени спекулятивен, Frazer et Anderson предположили, что HFE вступает в конкуренцию на уровне гепатоцитов с трансфериином в борьбе за RTf1. Выработка гепсидина таким образом коррелируется количеством сво-бодных HFE молекул на поверхности клетки. Мутации в гене HFE при этом ответственны за снижение выработки гепсидина и несоответствующую интестинальную абсорбцию железа.

Механизмы, с помощью которых отсутствие протеина HFE на поверхности клетки вызывает гиперабсорбцию и перегрзку железом, остаются непонятными. Также и в отношении значения физиологии взаимодействия между этим протеином и рецептором трансферрина. Взаимосвязь между гепсидином и протеином HFE также нуждается в уточнении.

4.1.3. Рецептор 2 трансферрина (RTf2)
Этот последний получил свое название благодаря определенной степени гомологии с рецептором 1 трансферрина (RTf1). В отличие от RTf1, который экспремируется убиквитарно, этот рецептор экспримируется преимущественно в печени и эритроидных прекурсорах. Он способен связывать трансферрин в зависимости от рН, но с аффинитовностью в 25 раз меньшей таковой RTf1, подтверждая тем самым, что захват железа не является принципиальной или уникальной функцией этого рецептора. Эта гипотеза подтверждается открытием мутаций гена кодирующего этот рецептор у пациентов проявляющих фенотип гемохроматоза, связанного с геном HFE. Эти последние наблюдения подтверждают роль регулятора RTf2. Кроме того, было открыто схожее распределение RTf1 и RTf2 в клетках играющих важную роль в регуляции гомеостаза железа, то есть в гепатоцитах и энтероцитах крипт и дуоденальной ворсинчатости. Распределение RTf2, наоборот, весьма отличается от такового RTf1 в тканях не принимающих участия в регуляции метаболизма железа. Предположив, что RTf2 способен связывать трансферрин, он мог пред-ставлять «детектор» количества железа в организме или участвовать в более сложном меха-низме работающем в этом определении. Согласно гипотетической модели Townsend et Drakesmith, утрата функции RTf2 будет проявляться в продолжительной недооценке насыще-ния трансферрином клетками крипт и, соответственно, гиперабсорбцией железа зрелыми энтероцитами.

Внутри клеток дуоденальных крипт, Griffiths et Cox показали, что RTf2 ко-локализуется с протеином HFE диким. Хотя в нормальной дуоденальной ткани распределение RTf2 оказывается в основном интрацеллюлярным; по велисине дефицита протеина HFE, RTf2 главным образом локализуется на уровне целлюлярных мембран, в частности, на базолатеральной поверхности. В этой же работе авторы сообщают, что добавление железа, связанного с трансферином, к клеткам Caco-2 в культуре явно стимулирует взаимодействие между эндогенным RTf2 и HFE внутри везикулярной области. Эти везикулы представляют вероятно субпопуляцию отличную от эндосом, участвующие в захвате и рециклаже железа, связанного с трансферрином в интестиналных криптах.

Мыши, страдающие нарушением гена гепсидина, проявляют фенотип схожий с таковым у мышей TfR2Y245X (мыши гомозиготные по мутации Y245X, ортологичной мутации Y250X, идентифицируемой у больных). Это наблюдение позволило разным авторам выдвинуть гипотезу в от-ношении RTf2, как точном информаторе для гепатоцитов. Он информирует последние о коли-честве плазмического железа, определяя насыщение трансферрином, и также оказывая влия-ние на выработку гепсидина. Согласно этой модели утрата функции RTf2 могла бы привести к снижению гепатического захвата железа приводя к снижению выработки гепсидина, что вызывало бы при этом увеличение интестинальной абсорбции железа и уменьшение его захвата мак-рофагами.

Большое сходство фенотипов перегрузки железом, наблюдаемых у мышей и/или индивидуумов с нарушениями в генах кодирующих HFE, RTf2 и гепсидин, фактически укладывается в гипотезу об участии этих молекул в том же пути регуляции.

4.2. Регуляция гомеостаза железа в клетках: система IRE/IRP
Одним из наиболее известных актеров посттранскрипционной регуляции у кариоцитов является система IRE/IRP (IronRespnsuve Element/Iron Regulatory Protein). Так смогли быть идентифицированы клонирование cDNAs рецептора трансферрина и цепей ферритина, как и элементов участвующих в железо-зависимой регуляции перевода этих протеинов. Эта регуляция в основном распространяется в неэритроцитарных клетках путем осуществления синтеза ферритина и RTf1. Цепи ARNm L и H ферритина, а также эритропоетической d-аминолевуноловой кислоты синтазы (eALAS), митохондриальной аконитазы и ферропортна представляют собой IRE в сво-ем регионе 5’ не-переводимом (5’UTR). ARNm DMT1 и трансферрина обладают сами по себе соответственно одной и пятью секвенциями IRE в своем регионе 3’ не переводимом (3’UTR). Эффект связи IRP/IRE отличен, так как секвенция IRE локализована в 5’ или 3’UTR. Фактически связь IRP c IRE в регионе 5’ UTR препятствует рассматриваемому переводу ARNm, при том, что, если IRE локализуется в 3’ UTR, то связь IRP-IRE мешает деградации этой ARNm и позво-ляет в связи с удлинением своей жизни, перевод а также более значительную выработку протеинов. Роль IREs в контроле за экспрессией ферропортина и DMT1 по внутриклеточной концентрации железа, наоборот остается спорной.

У лиц с гемохроматозом отмечалось что активность связи IRPs особенно повышена в клетках интестинальных крипт, как и в клетках мононуклеарных макрофагов. Это показывает, что эти клетки обладают функциональными характеристиками клеток с дефицитом железа, несмотря на перегрузку железом организма.

5. Заключение
Представление о молекулярных механизмах контроля гомеостаза железа быстро углубляется за последние годы благодаря методам молекулярной генетики и идентификации большого количества протеинов участвующих в метаболизме этого металла. Анализ экспериментальных моделей (носителей естественных мутаций или экспериментальных) и изучение заболеваний человека, связанных с нарушениями метаболизма железа, также внесли свою лепту. Они позволили и выявить комплексность биохимических сплетений задействованных в поддержании баланса железа в организме, хотя и без достаточного понимания всех механизмов. Имеются многочис-ленные аргументы в пользу того, что интестинальная гиперабсорбция железа не является единственной причиной генетического гемохроматоза, но что макрофаги, как и клетки печени, по меньшей мере, играют такую же важную роль, как и энтероциты в развитии этой наследственной перегрузки железом.

Новый этап исследований этого метаболизма состоит в дальнейшем изучении экспрессии совокупности генов различных типов клеток с помощью нанотехнологий в различных условиях перегрузки или недостатка железа.

В.В.Долгов, С.А.Луговская,
В.Т.Морозова, М.Е.Почтарь
Российская медицинская академия
последипломного образования

Железо является необходимым биохимическим компонентом в ключевых процессах метаболизма, роста и пролиферации клеток. Исключительная роль железа определяется важными биологическими функциями белков, в состав которых входит этот биометалл. К наиболее известным железосодержащим белкам относятся гемоглобин и миоглобин.

Помимо последних, железо находится в составе значительного количества ферментов, участвующих в процессах энергообразования (цитохромы), в биосинтезе ДНК и делении клеток, детоксикации продуктов эндогенного распада, нейтрализующих активные формы кислорода (пероксидазы, цитохромоксидазы, каталазы). В последние годы установлена роль железосодержащих белков (ферритин) в реализации клеточного иммунитета, регуляции кроветворения.

Вместе с тем железо может быть исключительно токсичным элементом, если присутствует в организме в повышенных концентрациях, превышающих емкость железосодержащих белков. Потенциальная токсичность свободного двухвалентного железа (Fе +2) объясняется его способностью запускать цепные свободнорадикальные реакции, приводящие к перекисному окислению липидов биологических мембран и токсическому повреждению белков и нуклеиновых кислот.

Общее количество железа в организме здорового человека составляет 3,5-5,0 г. Оно распределено следующим образом (табл. 3).

Обмен железа в организме человека достаточно экономичен. Постоянно происходит обмен железа между сохраняемым и активно метаболизируемым пулами (рис. 12).

Обмен железа в организме состоит из нескольких этапов: всасывание в желудочно-кишечном тракте, транспорт, внутриклеточный метаболизм и депонирование, утилизация и реутилизация, экскреция из организма.

Наиболее простая схема метаболизма железа представлена на рис. 13.

Всасывание железа

Основным местом всасывания железа является тонкий кишечник. Железо в пище содержится в основном в форме Fе +3 , но лучше всасывается в двухвалентной форме Fе +2 . Под воздействием соляной кислоты желудочного сока железо высвобождается из пищи и превращается из Fе +3 в Fе +2 . Этот процесс ускоряется аскорбиновой кислотой, ионами меди, которые способствуют всасыванию железа в организме. При нарушении нормальной функции желудка абсорбция железа в кишечнике ухудшается. До 90% железа всасывается в двенадцатиперстной кишке и начальных отделах тощей кишки. При дефиците железа зона всасывания расширяется дистально, захватывая слизистую верхнего отдела подвздошной кишки, что обеспечивает усиление его абсорбции.

Молекулярные механизмы всасывания железа изучены недостаточно. Определено несколько специфических белков, содержащихся в энтероците, способствующих всасыванию железа: мобилферрин, интегрин и ферроредуктаза. Свободное неорганическое железо или геминовое железо (Fе +2) поступает в энтероциты по градиенту концентрации. Основной барьер для железа, по-видимому, не участок щеточной каймы энтероцита, а мембрана между энтероцитом и капилляром, где присутствует специфический переносчик двухвалентных катионов (divalent cation transporter 1 - DCT1), связывающий Fе 2+ . Данный белок синтезируется только в криптах двенадцатиперстной кишки. При сидеропении синтез его увеличивается, что приводит к увеличению скорости всасывания алиментарного железа. Присутствие высоких концентраций кальция, являющегося конкурентным ингибитором DСТ1, снижает всасывание железа.

В энтероцитах содержатся трансферрин и ферритин, которые регулируют в них абсорбцию железа. Между трансферрином и ферритином существует динамическое равновесие по связыванию железа. Трансферрин связывает железо и переносит его к мембранному переносчику. Регуляция активности мембранного переносчика осуществляется апоферритином (белковая часть ферритина) (рис. 14). В случае, когда организму не требуется железо, происходит избыточный синтез апоферритина для связывания железа, которое задерживается в клетке в комплексе с ферритином и удаляется со слущивающимся кишечным эпителием. Наоборот, при дефиците железа в организме, синтез апоферритина снижен (нет необходимости запасать железо), одновременно увеличивается перенос железа DCT1 через мембрану энтероцит-капилляр.

Таким образом, транспортная система энтероцитов кишечника способна поддерживать оптимальный уровень абсорбции железа, поступающего с пищей.

Транспорт железа в крови

Железо в сосудистом русле соединяется с трансферрином - гликопротеид с Мм 88 кДа, синтезируется в печени. Трансферрин связывает 2 молекулы Fе +3 . В физиологических условиях и при дефиците железа только трансферрин важен как железотранспортирующий белок; с гаптоглобином и гемопексином транспортируется исключительно гем. Неспецифическое связывание железа с другими транспортными белками, в частности альбумином, наблюдается при перегрузке железом при высоком уровне насыщения трансферрина. Биологическая функция трансферрина заключается в его способности легко образовывать диссоциирующие комплексы с железом, что обеспечивает создание нетоксического пула железа в кровотоке, который доступен и позволяет распределять и депонировать железо в организме.Металлосвязывающий участок молекулы трансферрина не является строго специфичным для железа. Трансферрин может связывать также хром, медь, магний, цинк, кобальт, однако сродство этих металлов ниже, чем железа.

Основным источником сывороточного пула железа (трансферрин-связанного железа) является поступление его из ретикулоэндотелиальной системы (РЭС - печень, селезенка), где происходит распад старых эритроцитов и утилизация освобождающегося железа. Небольшое количество железа поступает в плазму при абсорбции его в тонком кишечнике.

В норме только треть трансферрина насыщена железом.

Внутриклеточный метаболизм железа

Большинство клеток, в том числе эритрокариоциты и гепатоциты, содержат на мембране рецепторы к трансферрину, необходимые для поступления железа в клетку. Трансферриновый рецептор - трансмембранный гликопротеин, состоящий из 2 идентичных полипептидных цепей, связанных дисульфидными мостиками.

Комплекс Fе 3+ - трансферрин попадает в клетки с помощью эндоцитоза (рис. 15). В клетке ионы железа освобождаются, а комплекс трансферрин-рецептор расщепляется, в результате чего рецепторы и трансферрин независимо возвращаются на поверхность клетки. Внутриклеточный свободный пул железа играет важную роль в регуляции пролиферации клетки, синтезе геминовых белков, экспрессии трансферриновых рецепторов, синтезе активных радикалов кислорода и др. Неиспользуемая часть Fе хранится внутриклеточно в молекуле ферритина в нетоксичной форме. Эритробласт может одновременно присоединить до 100 000 молекул трансферрина и получить 200 000 молекул железа.

Экспрессия трансферриновых рецепторов (СD71) зависит от потребности клетки в железе. Определенная часть рецепторов к трансферрину в виде мономеров сбрасывается клеткой в сосудистое русло, образуя растворимые трансферриновые рецепторы, способные связывать трансферрин. При перегрузке железом число клеточных и растворимых рецепторов к трансферрину снижается. При сидеропении лишенная железа клетка реагирует повышенной экспрессией трансферриновых рецепторов на своей мембране, увеличением растворимых трансферриновых рецепторов и снижением количества внутриклеточного ферритина. Установлено, что чем выше плотность экспрессии трансферриновых рецепторов, тем выраженнее пролиферативная активность клетки. Таким образом, экспрессия рецепторов трансферрина зависит от двух факторов - количества депонированного железа в составе ферритина и пролиферативной активности клетки.

Депонирование железа

Основными формами депонированного железа являются ферритин и гемосидерин, которые связывают "избыточное" железо и откладываются, практически, во всех тканях организма, но особенно интенсивно в печени, селезенке, мышцах, костном мозге.

Ферритин - комплекс, состоящий из гидрата закиси Fе +3 и белка апоферритина, представляет собой полукристаллическую структуру (рис. 16). Молекулярная масса апоферритина 441 кД, максимальная емкость молекулы около 4300 FеООН; в среднем одна молекула ферритина содержит около 2000 атомов Fе +3 .

Апоферритин покрывает в виде оболочки ядро из гидроксифосфата железа. Внутри молекулы (в ядре) содержится 1 или несколько кристаллов FеООН. Молекула ферритина по форме и виду в электронном микроскопе напоминает вирус. Она содержит 24 однотипных цилиндрических субъединицы, образующих сферическую структуру с внутренним пространством диаметром приблизительно 70 А, сфера имеет поры диаметром 10 А. Ионы Fе +2 диффундируют через поры, окисляются до Fе +3 , превращаются в FеООН и кристаллизируются. Железо может мобилизоваться из ферритина при участии супероксидрадикалов, образующихся в активированных лейкоцитах.

Ферритин содержит примерно 15-20% общего железа в организме. Молекулы ферритина растворимы в воде, каждая из них может аккумулировать до 4500 атомов железа. Железо высвобождается из ферритина в двухвалентной форме. Ферритин локализуется преимущественно внутриклеточно, где играет важную роль в кратковременном и длительном депонировании железа, регуляции клеточного метаболизма и детоксикации избытка железа. Предполагается, что основными источниками сывороточного ферритина являются моноциты крови, макрофаги печени (клетки Купфера) и селезенки.

Ферритин, циркулирующий в крови, практически не участвует в депонировании железа, однако концентрация ферритина в сыворотке в физиологических условиях прямо коррелирует с количеством депонированного железа в организме. При дефиците железа, которое не сопровождается другими заболеваниями, так же, как при первичной или вторичной перегрузке железом, показатели ферритина в сыворотке дают достаточно точное представление о количестве железа в организме. Поэтому в клинической диагностике ферритин должен использоваться в первую очередь как параметр, оценивающий депонированное железо.

Таблица 4. Лабораторные показатели нормального обмена железа
Сывороточное железо
Мужчины: 0,5-1,7 мг/л (11,6-31,3 мкмоль/л)
Женщины: 0,4-1,6 мг/л (9-30,4 мкмоль/л)
Дети: до 2 лет 0,4-1,0 мг/л (7-18 мкмоль/л)
Дети: 7-16 лет 0,5-1,2 мг/л (9-21,5 мкмоль/л)
Общая железосвязывающая способность (ОЖСС) 2,6-5,0 г/л (46-90 мкмоль/л)
Трансферрин
Дети (3 мес. - 10 лет) 2,0-3,6 мг/л
Взрослые 2-4 мг/л (23-45 мкмоль/л)
Пожилые (старше 60 лет) 1,8-3,8 мг/л
Насыщение трансферрина железом (НТЖ) 15-45%
Ферритин сыворотки крови
Мужчины: 15-200 мкг/л
Женщины: 12-150 мкг/л
Дети: 2-5 месяцев 50-200 мкг/л 0,5-1
Дети: 6 лет 7-140 мкг/л

Гемосидерин по структуре мало отличается от ферритина. Это ферритин в макрофаге в аморфном состоянии. После того как макрофаг поглощает молекулы железа, например, после фагоцитоза старых эритроцитов, немедленно начинается синтез апоферритина, который накапливается в цитоплазме, связывает железо, образуя ферритин. Макрофаг насыщается железом в течение 4 ч, после чего в условиях перегрузки железом в цитоплазме молекулы ферритина агрегируют в мембранно-связанные частицы, известные как сидеросомы. В сидеросомах молекулы ферритина кристаллизуются (рис. 17), формируется гемосидерин. Гемосидерин "упакован" в лизосомах и включает комплекс, состоящий из ферритина, окисленных остатков ли-пидов и других компонентов. Гранулы гемосидерина представляют собой внутриклеточные отложения железа, которые выявляются при окраске цитологических и гистологических препаратов по Перлсу. В отличие от ферритина гемосидерин не растворим в воде, поэтому железо гемосидерина с трудом подлежит мобилизации и практически не используется организмом.

Выведение железа

Физиологические потери железа организмом практически неизменны. За сутки из организма мужчины теряется около 1 мг железа с мочой, потом, при стрижке ногтей, волос, слущивающимся эпителием кожи. Кал содержит как невсосавшееся железо, так и железо, выделяющееся с желчью и в составе слущивающегося эпителия кишечника. У женщин наибольшая потеря железа происходит с менструацией. В среднем потеря крови за одну менструацию составляет около 30 мл, что соответствует 15 мг железа (за сутки женщина теряет от 0,8 до 1,5 мг железа). Исходя из этого, суточная потребность в железе у женщин детородного возраста увеличивается до 2-4 мг в зависимости от объема кровопотери.

Согласно современным представлениям, наиболее адекватными тестами для оценки метаболизма железа в организме являются определение уровня железа, трансферрина, насыщения трансферрина железом, ферритина, содержания растворимых трансферриновых рецепторов в сыворотке.

БИБЛИОГРАФИЯ [показать]

  1. Беркоу Р. Руководство по медицине The Merck manual. - М.: Мир, 1997.
  2. Руководство по гематологии / Под ред. А.И. Воробьева. - М.: Медицина, 1985.
  3. Долгов В.В., Луговская С.А., Почтарь М.Е., Шевченко Н.Г. Лабораторная диагностика нарушений обмена железа: Учебное пособие. - М., 1996.
  4. Козинец Г.И., Макаров В.А. Исследование системы крови в клинической практике. - М.: Триада-Х, 1997.
  5. Козинец Г.И. Физиологические системы организма человека, основные показатели. - М., Триада-Х, 2000.
  6. Козинец Г.И., Хакимова Я.Х., Быкова И.А. и др. Цитологические особенности эритрона при анемиях. - Ташкент: Медицина, 1988.
  7. Маршалл В.Дж. Клиническая биохимия. - М.-СПб., 1999.
  8. Мосягина Е.Н., Владимирская Е.Б., Торубарова Н.А., Мызина Н.В. Кинетика форменных элементов крови. - М.: Медицина, 1976.
  9. Рябое С.И., Шостка Г.Д. Молекулярно-генетические аспекты эритропоэза. - М.: Медицина, 1973.
  10. Наследственные анемии и гемоглобинопатии / Под ред. Ю.Н. Токарева, С.Р. Холлан, Ф. Корраля-Альмонте. - М.: Медицина, 1983.
  11. Троицкая О.В., Юшкова Н.М., Волкова Н.В. Гемоглобинопатии. - М.: Изд-во Российского университета дружбы народов, 1996.
  12. Шиффман Ф.Дж. Патофизиология крови. - М.-СПб., 2000.
  13. Baynes J., Dominiczak M.H. Medical Biochemistry. - L.: Mosby, 1999.

Источник : В.В.Долгов, С.А.Луговская, В.Т.Морозова, М.Е.Почтарь. Лабораторная диагностика анемий: Пособие для врачей. - Тверь: "Губернская медицина", 2001